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Abstract 

Physical phenomena such as incommensurate phases 
or diffraction enhancement of symmetry are inter- 
preted by using symmetry groups in four, five or six 
dimensions. This first paper concerns the point- 
symmetry operations (PSO) in these Euclidean super- 
spaces. Elementary, non-elementary, degenerate and 
non-degenerate PSOs are defined and their 
geometrical supports and geometrical symbols are 
specified. A geometrical description is thus given of 
nineteen types of PSO which are either the crystallo- 
graphic rotations of the four-dimensional space or 
the crystallographic rotations and improper rotations 
of the five-dimensional space or the improper crys- 
tallographic rotations of the six-dimensional space. 
These PSOs are elements of crystallographic point 
groups of these spaces and the physical application 
to polar point groups is given. 
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General introduction 

Regularities observed in the diffraction pattern of a 
crystal and not explained by the three-dimensional 
Euclidean symmetry-cal led external space sym- 
met ry-  are interpreted as due to Euclidean symmetry 
in a (3 + d)-dimensional superspace involving d addi- 
tional dimensions, called internal dimensions (Janner 
& Janssen 1980). 

The following cases of incommensurate phases are 
well known; according to whether the incommensura- 
bility is parallel to a crystallographic direction, to a 
direction of a crystallographic plane or to any direc- 
tion of the crystal, one, two or three additional (inter- 
nal) d dimensions may be introduced (de Wolff, 1974; 
Comes, Lambert & Zeller, 1973; Janner & Janssen, 
1977; Yamamoto, 1982). 

The symmetry of diffraction patterns of some 
layered or intercalate crystals may be higher than that 
corresponding to the Friedel-Laue class (Sadanaga 
& Takeda, 1968; Marumo & Saito, 1972; Iwasaki, 
1972). This phenomenon has been termed 'diffraction 
enhancement of symmetry' and two types-s imple  
and doub le -have  been analysed (Perez-Mato & 
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Iglesias, 1977; Sadanaga & Ohsumi, 1979). If one 
uses a supercrystal in a (3 +d)-dimensional  super- 
space one finds that the experimental diffraction pat- 
tern has the Laue symmetry belonging to the external 
point group of the supergroup- i .e ,  the three- 
dimensional point group consisting of external com- 
ponents of the superspace group (Janner & Janssen, 
1980). 

So, it is important to study crystallography in four, 
five, six etc. dimensions and in particular its geometric 
and physical aspects: this is the purpose of this series 
of papers; the first papers treat the point symmetry 
and its possible physical applications. 

Introduction 

Point-symmetry operation (PSO) groups, in other 
words the isometric mappings of four-dimensional 
Euclidean space IE 4, have been studied from as far 
back as the end of the 19th century. 

Goursat (1889) had already given a list classifying 
them into two families: the first is the set of all proper 
rotation groups which he called right substitution, 
the second is the set of all groups containing at least 
one improper rotation (or rotation-reflection) which 
he called left substitution. 

As he studied the characteristic polynomial* of a 
point-symmetry operation in a space of n dimensions, 
Hermann (1949) enumerated various types of crys- 
tallographic PSO and proposed a notation for PSOs 
connected to their polynomial roots (eigenvalues). 

Hurley (1951), following and implementing 
Goursat 's  works, drew up, in E 4, the list of crystallo- 
graphic groups and their elements (PSOs) for which 
he proposed also a notation connected to the charac- 
teristic polynomial invariants: one capital letter fol- 
lowed by values of the three invariants. 

Neubiiser, Wondratschek & Billow (1971; Billow, 
Neubiiser & Wondratschek, 1971; Wondratschek, 
Billow & Neubiiser, 1971) utilized Hurley's (1951) 
symbols to describe elements of holohedric geometric 
crystal classes relative to the 33 crystal systems 
classified into 23 crystal families in E 4. 

None of these authors aimed at geometrically 
describing the various PSOs of E n. Throughout this 
paper, we define the elementary, non-elementary, 
degenerate and non-degenerate PSOs with the pur- 
pose of correctly describing for the first time their 
geometric supports: this leads us to give a very clear 
geometric notation for each type of PSO in E 4, E 5 and 
for a few of E 6. 

PHYSICS IN HIGHER DIMENSIONS.  I 

I. Point-symmetry operations of  IE" 

Throughout the following papers, [ "  denotes a 
Euclidean vector space defined over the field of reals 
R and E" denotes the corresponding affine space. 

Definition. A point-symmetry operation (PSO) or 
point isometry is an intrinsic mapping of E" leaving 
any distance or 'norm'  and at least a point of E" 
unchanged. 

Each PSO is fully described by its eigenvalues 
associated with their multiplicity order. Let 

q be the multiplicity of 1 eigenvalue; 
r be the multiplicity of -1  eigenvalue; 
s be the number of pairs of eigenvalues denoted 

e i° and e -i°, e i~ and e - ~ , . . . ,  where 0, 9 , . . .  belong 
to [-rr ,  0 ] u  [0, rr]. 

It is clear that q + r + 2s = n. 
Eigenvalues +1 and -1  are associated with E q and 

[ ~ eigenspaces, respectively. To each pair of eigen- 
values e i° and e -~° corresponds a globally unchanged 
real plane [~ in which the isometry is reduced to a 
unique rotation of angle 0. 

Then ["  admits a direct sum decomposition into 
two by two orthogonal eigenspaces: 

["  = [ q 0 ) [ "  2 2 ~ [ o G I E ~ 0 ) . . .  (1) 

and this decomposition is unique if 0 # ~ ~ ~ . . . .  
It is pointed out that the geometrical pattern of a 

PSO relies, on the one hand, on the vector spaces ":q, 
II :r and the s planes IE 2 and, on the other hand, on the 
two numbers +1 and -1  and the values of the angles 
0, ~p, etc. 

The point-symmetry operation is called a rotation 
denoted by OPS ÷ if r is an even number and an 
inversion-rotation or reflection-rotation denoted by 
OPS- if r is an odd number. 

Extrinsic pattern of  a PSO 

Let ( e~ , . . . ,  e,) be an orthonormal basis of ":". In 
this basis the PSO is described by means of an 
orthogonal matrix* A± such that 

X ' = A I X  

where X and X" denote the column matrices built 
with the n coordinates of the vector OP and its image 
OP'.  

If the determinant value is equal to + l ,  the PSO 
is a PSO +, if equal to -1  it is a PSO-. 

There exists at least one orthonormal 'reduction'  
basis among which the A matrix can be written as 

* Appendix 1 recalls the definitions of the characteristic poly- 
nomial and the eigenvalues of an isometry of E", or more precisely 
of the orthogonal associated transform in E". 

* An orthogonal matrix has the following properties, with respect 
to an orthonormal basis: (I) 'A l = A~: (2) det A± = +1. 
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follows: 

with 

A =  L A0 (2) 

A¢ 

( c o s 0  - s i n  00) 
A 0 = k s i n 0  cos ' 

where Iq denotes the identi ty matrix of  n=q, L the 
'homothetie - 1 '  matrix* of  n =~, A0, A~o,... the rotat ion 
matrices of  ~=g, ~=~, . . . .  A ' reduct ion '  basis is com- 
posed of  o r thonormal  vectors of  or thogonal  bases of  
Fq, u=; ~=2, F2 , . . .  

Examples. Given the four or thogonal  matrices in 
~2, E3, H=4, 11=5: 

t I } 
AO 

they represent  PSOs that  can be considered:  either 
as rotat ions through the angle 0 in IE~y, E~z, ~:~,, IF,~; 
or as a rotat ion through the angle 0 about  the point  
0 of  IF 2, about  the axis x of  II :3, about  the plane xy of  
IF 4, about  the space xyz  of IF 5. 

We recall that  in i :4 the planes xy and zt meet only 
at the point  0 since (x, y, z, t) is a basis of  n :4. 

Elementary PSOs o f  ~_" 

Definition. Given the matr ix (2), extrinsic writing 
of  the most  general PSO of n:" ; if  0 # ~0 # ~ # . . .  # k~, 
then there exists a unique decomposi t ion  of  this 
matrix into a commutat ive  product  

I ) AO = 

fl 
° , ,  

1 
• • ° 

where the factors of  this product  represent  by defini- 
tion the e lementary  (intrinsic) PSOs of  F n. 

As a consequence  there exists only two types of  
e lementary  PSO* in n:n: 

the rotat ion (PSO ÷) through the angle 0, (0 # ~r) in 
a plane H :2 included in n:"; 

the homothetie - 1  in IF', subspace of  IF ~, called 
'part ial  homothetie - 1' of  dimension r in F" with the 
following part icular  types: 

r = 0 identi ty of  IF" (PSO+); 
r = 1 reflection about  a hyperplane  H :~-~ (PSO-) ;  
r = 2 rotat ion through the angle ~ in F 2 (PSO+); 
r = n (full) homothetie - 1  in F ". I f  n is even, this 

homothetie is a PSO ÷ and if n is odd it is a PSO-.  

Geometrical support o f  the elementary PSOs o f  [_" 

The geometrical  suppor t  of  an e lementary  PSO of  
II=" is, by definition, the subspace of  IF" point -by-point  
unchanged  by this PSO (hence it is the e igensubspace 
associated with +1 eigenvalue). 

For  instance,  the rotat ion supports  (PSO +) given 
as examples  in the preceding paragraph  are: point  O, 
axis x, p lane xy, space xyz. 

As for the partial  n-dimensional  "homotheties - 1  of  
~:", their  suppor t  is the subspace [ , - r  such that  n ="-r 
is the supplementary ,  thus or thogonal ,  subspace of  
n :~. The following examples  can be emphasized:  

~:" space for ident i ty;  
n :~-~ hyperp lane  for the reflection; 
11 :"-2 subspace,  supp lementa ry  of  (or thogonal  to) 
n:~ for 7r rota t ion;  
point  0 for - 1  total (n-dimensional)  homothetie. 

Notation o f  the elementary PSOs o f  F." 

Elementary  PSOs are denoted by means  of  only 
one symbol.  

Consider ing e lementary  rotations,  with 0 # ~r, it is 
obvious that  the choice of  a basis implies an orienta- 
t ion of  the plane I=2o. We then generalize the Schoen- 
flies nota t ion system but  with H e r m a n n - M a u g u i n  
symbols.  If  0 = 27r/3 we shall denote  the rotat ions 
shown in the preceding example by: 3 ~y, 3~z, 3 lzz, 3 it.,. 
I f  0 = 47r/3 we shall denote  them by: 3 2 ,  32z, . . . .  (1 )(,. ). 

• ° •  • .  

1 1 
x AO A~o , 

1 I . 
• . . •  

! 1 

(3)  

* The "homothetie k" is the mapping which associates the vector 
u with the vector u' such that u'= ku. 

* A 0 rotation in ~=20 may be decomposed into a non-unique and 
non-commutative product of two reflections onto two hyperplanes. 
The axes orthogonal to these hyperplanes belong to [2 and 0/2 is 
the angle between them. In the same manner the r-dimensional 
partial homothetie -1 of E n can be decomposed into r reflections 
onto r hyperplanes but this decomposition is, like the previous 
one, arbitrary and has no geometrical meaning• Furthermore, the 
eigenvalues characterizing in an intrinsic manner the PSO(2) are 
+1 "[multiplicity q), -1 (multiplicity r), e i°, e -i°, e l*, e -i* . . . . .  For 
these three reasons, we shall not consider that the reflection about 
a hyperplane is the unique (super) elementary PSO of I=" as do 
Kuntsevich & Belov (1968)• 
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For the r-dimensional homothetie -1  of ~:" we 
denote by: 1 ~ the identity (r = 0); M~x~., the reflection* 
about the hyperplane orthogonal to Xq÷~(r= 1); 
2~x~÷~x~.~ the rotation 7r (r = 2), T~, in general (2 < r < 
n); ]El, or T ~. as a simplification if r = n and moreover 
i3 ~ will be simply written T ~. 

In any case of an elementary PSO notation, the 
lower index refers to the supplementary (orthogonal) 
subspace of the PSOs support. 

Non-elementary PSOs of ~-~ 

Assume first that 0 ~ g, ~ ~ ~ . . .  ~ kTr. 

Definition. If the decomposition (3) of one PSO of 
n :n admits at least two factors, this PSO is a non- 
elementary PSO: it is the commutative product of 
elementary PSOs. 

Geometrical support of a non-elementary PSO of ~_~ 

The geometrical support of a non-elementary PSO 
of ~" is, by definition, the (s + 1) upset (or the s upset if 
r =0)  relative to the (s +1) elementary PSOs it is 
constituted of (see following examples). 

Subspaces of ~." point-by-point invariant by one non- 
elementary PSO of It-" 

It is the intersection of the geometrical supports of 
the elementary PSOs thal~ set up this PSO. (See follow- 
ing concrete examples and see § II for physical appli- 
cations.) 

Notation of non-elementary PSOs of IV -n 

Several symbols can be used: it is the commutative 
product of elementary PSOs that sets up this PSO. 

Examples of elementary or non-elementary PSOs of ~_" 

As concrete examples, we give the list of the most 
general PSOs of IF3, H:4,~ 5 and we specify their 
geometrical support, the set of their unchanged points 
and their notation (we still assume that 0 ~ ~ ~ . . .  
kzr and 0 = 2rr/3, ~p = 2zr/4 in order to write these 
PSOs). 

PSOs of ~3 

elementary rotation of H :3 

0) 
A0 

* M generalizes m of n :3 and recalls that the hyperplane is the 
mirror upon which the reflection applies. 

support: axis x; notation 3 l yz  

°o) 
general non-elementary PSO- of ~:3 
support: plane yz and axis x. 

Invariant point: point 0; notation ~ ~ M x3 vz = $3 l = ~5. 

This is a 2~-/3 rotation-reflection that Schoenflies 
denotes by only one symbol $3 ~. It is equal to the 
- 2 r r / 6  rotation-reflection that Hermann & Mauguin 
also denote by only one symbol gs. 

PSOs of ~_4 

general non-elementary rotation of IE 4 
support: (zt) and (xy) 
set of invariant points: point 0 

! i notation 3 xy4~t 

1 

T 
A0 

general non-elementary PSO- of E 4 

support: (xzt) and (xy) 
set of invariant points: axis x 
notation M~3 z t °  

PSOs of ~:5 

general non-elementary rotation of II :5 
support: (xtu) (xyz) 
set of invariant points: axis x 
notation ~ 3 yz4,u 

T A0 /t~) 
general non-elementary PSO- of ~:5 
support: (yztu) (xtu) and (xyz) 
set of invariant points: point 0 

• l l I notation: Mx3yz4,u. 

Degenerate and non-degenerate PSOs of ~_n 

Definition. A PSO is degenerate if at least one 
of its eigenvalues is a multiple-order root of the 
characteristic polynomial• It is non-degenerate in the 
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opposite case (i.e. if q = 0 or 1, r = 0 or 1, 0 # q~ ~ . . .  
klr). 

Thus the general PSOs lE3 lea, lE5 are non-degenerate 
when the elementary rotations of lea and lE5 are degen- 
erate (eigenvalue 1, with multiplicity 2 and 3, respec- 
tively). 

The partial homotheties -1  of IF" are always degen- 
erate if n > 2 [eigenvalues -1  and (or) +1 of multiple 
order]. 

The identity and the total homothetie -1  of IF" are 
completely degenerate if n > 1 (one n-order eigen- 
value +1 or -1 )  and their product by another PSO 
of E ~ is always commutative. 

Multiple eigenvalue + 1 or - 1 

In this case, the decomposition (1) is unique and 
the geometrical support is uniquely defined. 

For example: PSO- of lE5 denoted by [~y~3 ~. (0 = 
2~/3). 

The support is (tu) and (xyz); the set of invariant 
points reduces to point 0. 

Multiple eigenvalue e i° or e i* , . . .  

When n -> 4, we may have the following cases, apart 
from the cases mentioned above: 

0 = ~ o ~ ¢ ~ . . .  o r 0 = ~ 0 ~ ¢ = X ~ . . .  

or O = q ~ = q r ~ X #  . . . .  

Then the decomposition (1) is still unique if it is 
written differently: 

[l z" = [l:q @) [E" 0) Ig4o@~ [g~ @)... (1') 

= IEc,~,G... (1") 

E" =F_"®~.~eF.~oooeF.~e . . . .  (1") 

An ambiguity appears in the decomposition into 
elementary PSOs and in the definition of the 
geometrical support but only inside vector spaces 
~ '4 ,  [E6, • • • • 

Consider, for instance, the following simple case 
taken in IE a with q = r = 0 and 0 = ~p # kzr. 

(no) w ere o: c°sO 
AOA0 = B0  k s i n  0 

-sin:) 
cos  

(4) 

This is a non-elementary degenerate PSO + equal 
to the commutative product of two rotations through 
the angle 0 in the two orthogonal planes (x~x2) and 
(x3x4). We can show that these two planes of rotation 
are not unique but belong to a one-parameter family 
of pairs of orthogonal planes. 

Let 

X l : A X  I - -  ~[£X3 X 3 = / ~ X  l + Ax3 

X 2 : AX 2 +/./,X 4 X 4 = - -~X 2 + AX4 

with h,/~ ~R and ,~2..[_],~2_. 1. 

Under these conditions it can easily be verified that 
(X~,X2, X3, X4) is a direct orthonormal basis, that 
(x~, x2)(x3, x4) correspond to A = 1,/.t = 0 and that the 
planes (Xl, X2) and (X3, X4) are orthogonal [each 
vector of (X~, X2) is orthogonal to each vector of 
(X3, X4)]. Let V be the matrix which transforms the 
(xi) basis into the (Xi) basis and let V -~ be the inverse 
matrix: (i0 i) V =  A 0 

0 A 

- I~ 0 

V-~= 1 0 ( d e t V = l ) .  
- 0 1 

/~ 0 A /  

In the (Xi) basis the isometry AO matrix is 

B =  VAOAOV_t=(AO 0 O )  
AO " 

It keeps the same form as (4). Thus, in any 
(X~, . . . ,  X4) basis corresponding to any couple A,/~ 
(A2+/~2=1) the PSO matrix is the same reduced 
orthogonal matrix (4).* 

This result can easily be generalized to other cases 
of degeneration. The 'reduction' bases then differ, not 
only by the arbitrary choice of pairs of basis vectors 
chosen in the uniquely defined planes, but also by 
the arbitrary choice of pairs of orthogonal planes 
chosen in uniquely defined families in lE40, IF6000, • • •, 
only E40, 6 E ooo,.., spaces are uniquely defined. 

Any notation in the form ~4~ a~ al ~ ~ involves . ~  X 2 - -  X 3 X 4 w  X 5 X 6  .-" X 7 X  8 

an arbitrary choice (the choice of xi for 3 -< i -< 6). 

II. The  crys ta l l ograph ic  P S O  o f  ["  

Crystallographic PSOs are those PSOs compatible 
with the perodicity of the crystal lattice in E n (Weigel 
& Berar, 1978). 

We shall first detail the crystallographic PSO of [4. 
Let ~2 be a general PSO+; in a 'reduction' basis it is 
described by the matrix 

/cos o sinO 0 O) 
A = [s in 0 cos 0 0 0 . 

0 cos q~ - s in  

0 sin ~o cos 

* This double rotation through the angle 0 in two orthogonal 
planes is called a 'Clifford displacement' (Coxeter, 1973). 
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Table 1. The five geometrical symbols of the crystallographic PSOs of E 2, [173, E 4 

PSO+F2 PSO +F3 PSO-E 3 PSO -F4 Hurley Hermann 

! 1 M ' z  * M I r 2 1 1 1  
-_ 

degenerate 2~y * 2 ~  1' * lye, T' 2 2 2 1  

l ±1 ±1 A,414±1 /~fl A±I 4xy * 4rz --- x-yz --- y-zt F 4 2 1 
±l ±1 M l ~ ± l  M I~±l N 62 1 non-degenerate 6xy , 6yz  . .-  x v y z  .-- y v z t  

±1 ±l M l a ± l  MI~  ±l N '  32 1 3 x y  * 3y z  . .-  x - y z  . - - y - z ,  

N o t e s :  

Hurley and Hermann notations are valid only in ~:4. 
The elementary PSOs are indicated by an asterisk (*). 
The identity 1 is a trivial PSO, for which it is of  no interest to detail the elementary or non-elementary characters. 
On the contrary, the identity ! and the total h o m o t h e t i e  - I  are fully degenerate PSOs. 

Its characteristic polynomial is 

det ( A -  AI) = / ~ 4  _ 2(cos ~ +cos 0)A 3 

+2(1 +2 cos ~0 cos 0)A 2 

-2 (cos  tp + cos 0)A + 1. 

Now considering a basis erected with the definition 
vectors of  a primitive cell of  a crystal lattice, it appears 
that the characteristic polynomial 12 has only integral 
positive or negative coefficients. 

It can be seen that if (0, ~) is a solution, so is (~, 0) 
and ( w - 0 ,  7 r -  ~o). Thus it is sufficient to look for a 
relation satisfying cos ~ + cos 0 --- 0. 

Let 

2(cos ~ + cos 0) = k, k ~ N 

2(1 +2 cos ~ cos 0) = k', k' ¢ 7/. 

Then cos ~ and cos 0 are solutions of the equation 

x2_kx +l(k'_ ) 
2 2 \ 2  1 =0 ,  

where X '  and X" roots must belong to [ -1 ,  1]. 
A simple reasoning gives as possible values for k 

and k' the following: 

4 I ° I1o.,.  • k' ] - 2 , - 1 , 0 , 2  2,3 

Since the general PSO- of ~:4 in a ' reduction'  basis 
is described by ( 00 

i o 
0 cos 0 

0 sin 0 

0 

° I 
- s in  0 

cos 0 

then it can rapidly be verified that the various types 
of PSO- of  E 4 are strictly similar to the five types of 
PSO- of  E 3 (see Table 1). 

In the same way it can be shown that the various 
types of  PSO + of E 5 and PSO- of E 5 and of E 6 are 
strictly similar to the 19 types of PSO + of[E 4 (Table 2). 

In fact, a ' reduction'  basis, the PSOs of E 5 and ~6 
are described by !40 

Oo °°°. 1 A 

l l 0 IO 0 0 0 I 
0 T i 0  0 0 0 

i --6 .......... 

! 

0 0 A 

0 0 

0 0 

where A denotes the matrix of the PSO ÷ of ~4 written 
above. 

The numbers of different types of PSO in n- 
di~mensional spaces are given in Table 3. 

Conclusion 

The description of the PSOs of [E 4 and of their 
geometric support is useful in physics in particular 
for the counting of polar groups. In fact all PSO 
elements of such a group must leave at least one 
vector of  the space E" unchanged: the electric polariz- 
ation vector. If the invariant point-by-point subspace 
of only one PSO of a crystallographic group is 
reduced to a point, this group cannot be polar: such 
a PSO is called 'non-polar ' .  Thus 

3~y is non-polar in E 2 
6~yz = l i Mx3rz is non-polar in ~:3 
8 ~ 8  I ~8 is non-polar in E 4, and so on. 

Through these geometric points of view, we have 
proved there are 32 _psoint crystallographic polar 
groups in II =4 and 227 in E (Weigel & Veysseyre, 1982); 
we expound these results in connection with the point 
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Table 2. The nineteen geometrical symbols of the crystallographic PSO of [E 4, E 5, ~6 

Hurley Hermann PSO+~ 
D 44  - x y - z t  

-1±1.~±1 33 - x y ~ ,  

fi±lg±l degenerate 66 ~xy ~ 

l l l l  l 

2222 /~ 

K 311 3z~t I 

RE 2211 2~  I 
411 4~  l 

61 ! 6 :~ I 

8 R ±lR±3 
~ x y ~ z t  

63 6±1-1 ±~ ~ x y ~  z t  

non-degenerate ] ~, 62210 T5 "lfl ±1 --xy 19±119±5 - x y - z t  ~±1~±2 ~ x y - z t  fi±lg±l ~xy -1°±3 " ~ z t  - z t  

i 64 6 ±1`4±1 v x y - - z t  

4̀±1-1±1 43 - x y -  z, 
`4±19±1 422 - x y - z t  

322 -1±~9 ±~ ~ x y - - z t  

PSO+E 5 PSO-E 5 PSO-E 6 

±ld±l  ]~.1`4± IA ±1 ~[I A±I/I±I 
y z  ~ t u  --- x--yz ~ t u  " "  y - -  z t  ~ u v  

3±1-1±1 ~,11-1± 19 ± I ~ .  1-1± I.~ ± I 
y z  ~ t u  - ' - x ~  y z  ~ t u  " ' ° y ~  z t  - u v  

±16±1 Ml(x±l~±l  /~1 ~21~±1 
y z  ~ z u  - . - x v y z  ~ t u  - - - y v z t  ~uv  

1 M~ * M m o  

- I  

3~:u t M:-1 ±1 Ml-1±l 
- . -  z ~ t u  - - - 1~  u v  

2~:u I M I 9  ±1 /i/i,19±1 
- . - z - t u  ..- t-uv 

4~, I M l a  ±l Mld[±l 
. . - z ~ t u  . . .  t ~uv  

6 ~ .  I M l ~  ± l  r d l ~ ± l  
. . o z ~ t u  . . .  t ~uv  

±1R±3 ]~f I R±IR±3 lid' I R± IR±3 
y z  ~ t u  " "  x ~  y z  ~ t u  " "  y ~  z t  ~ u v  

±1-121 h//I/~± 12± I t~ltl ~e lg±  I 
y Z~ tu  - - - x vyz  ~ tu  - - -  y ~ z / ~ u v  

7±11925 /W119±1 ±5 /iAt119±11925 19 
- y z  " - t u  - . -  x . - y z  " - t u  "--y--zt  " - uv  

±19±1 ~11 ~± I,-) ± I /~lt I ~± I,~± I 
y z  ~ t u  . ' -  x ~ y z  ~ t u  " ' -  y ~ z t  ~ uv  

l 0±11~ ±3 hal  1()±110±3 / ~ f l  lfl±l 1fl±3 
~ y z  " ~ t u  "'-x-~yz " ~ t u  " "  y ' v z t  " ~ u v  

521q±2 ~ 1  ti±lq±2 /~1 ~±1~22 
y z  ~ t u  "'-x ~ y z  ~ t u  " ' -  y ~  z t  ~ uv  

±IA±I M I ~±IA±I M I  ~±ld±l  
y z  ~ t u  - . -  x ~  y z  ~ t u  - . -  y ~  z t  ~ u v  

±1-1±1 t~ I ,,i ± 1-1 e I /id. ] A ± I-,i ± I 
y z  ~ t u  " ' -  x - -  y z  ~ t u  "'" y~z! ~ u v  

±19±1 /~[I A±Ig±I MId± l , )± l  
y z  - t u  " ' - x - - y z  - t u  - - - y - - z t  - u v  

±19±1 MI-1±I-)±I j~lt I ,~ ± 19±1 
y z - t u  - . - x ~ y z ~ t u  " "  y~z t  ~ u v  

Notes: As for Table !. 

Table 3. Number of different types of PSO in 
n-dimensional spaces with n <- 10 

Dimension 
ofF" 0 1 2 3 4 5 6 7 8 9 .  10 

PSO ÷ 1 1 5 5 19 1 9 1 5 9  i 59 [ 165j  165 
P S O -  1 1 5 5 1 9 - 1 9 - t _ 5 9 _ - _ _ @ -  , 165 165 

groups of incommensurate phases in F 4, ~5, ~6 in the 
next paper of this series (Veysseyre, Weigel, Phan & 
Effantin, 1984). 

We thank E. F. Bertaut, a member of the French 
Academy of Sciences, for the constant encouragement 
he has given us throughout this work. 

APPENDIX 

Let F be an n-dimensional vector space over C, H: be 
the corresponding affine space, ~ an orthogonal map- 
ping of E associated with a point isometry of IF and 
I the identity mapping of ~:. 

X, a non-zero vector of F, is an eigenvector of ~ if 
there exists a complex number A such that ~(X) = AX; 
A is called the eigenvalue associated with X. 

The characteristic polynomial of ~ is the poly- 
nomial det (~ - AI). 

Let B = ( e l , . . . , e , )  be a basis of E and ~ = ( a 0 ) 0 ,  
the matrix of ~, in this basis, is 

\a . ,  ... a~./ 

The columns consist of the vectors q~(ei) in the basis 

det (~o - AI )=  

B: 

a l l  - A a l 2  . . .  a l n  

a21  a 2 2  - A . . .  a2n  
; . • 

an  I an2  • • • a n n  - -  A 

The characteristic polynomial expression is 
independent of the basis B chosen in F; h is the 
eigenvalue of ~o if and only if it is a root of the 
characteristic polynomial of ~o. Then ~o admits n 
complex eigenvalues distinct or non-distinct, the 
eigenvalue product is det ~0, their sum is trace ~o = 
E,~=, aii. 

The eigensubspace associated with the eigenvalue 
A is composed of the null vector 0 and of the eigenvec- 
tors associated with A. 

The eigensubspace associated with the eigenvalue 
1 is the set of invariant vectors of ~. 

Theorem 

There exists an orthonormal basis of F in which 
the matrix of q~ is 

A O  1 

• ° 

AO~ 
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Iq: identity q-dimensional matrix; T~: homothetie - 1 
r-dimensional matrix; 

AOk__(COS O k - -s in  Ok) . 

-\sin O k COS O k " 

q + r + 2 s = n .  
Let B = (e~, . . . ,  en) be an orthonormal basis of N:. 
By means of B, IE n can be identified with R n. By 

means of canonical injective mapping: R ~ C, R" can 
be identified with a subspace of C". 

The restriction to R" xR" of the Hermitian scalar 
product of C" is the Euclidean scalar product of IF. 

In the basis B the matrix of ~p is orthogonal and 
real: tAA = I. Over C" it defines a unitary operator 
• . Real eigenvalues of qb are 1 and -1 ,  non-real 
eigenvalues are 2 by 2 conjugate: they all have a 
modulus of 1. Let us settle then with the following 
sequence: 

1, 1 , . . . ,  1, - 1 , . . . ,  -1 ,  e l° , , . . . ,  e i°`, e-i°~. 

Since ~ is unitary, there exists an orthonormal 
basis of eigenvectors of ~. Eigensubspaces associated 
with two non-real eigenvalues are orthogonal. We can 
choose eigenvectors 2 by 2 conjugate, making up a 
basis of these subspaces. Real vectors can be chosen 
as eigenvectors corresponding to eigenvalues 1 and 
-1 .  Hence we have an orthonormal basis of C": 

g~ , . . . ,  gq+, , f~, f~, . . .  , f k , f k , . . .  ,f~,f~. 
We write: 

1 
gq+,+2k-, = ~-~(fk + fk) 

i 
gq+r+2k = ~ ( f k  --fk) 

l<_k<_s. 

Then ( g , , . . . ,  g,) is a real orthonormal basis of C" 
and an orthonormal basis of R". 

In this basis 
it is written as 

the matrix of qb is the matrix of ~p and 
given in the theorem. 

1 
= + 

= ~-~[e/°~J~ +e-i°~fk ] 

= COS 0 gq+r+2k-I 

+i  sin O ( - ~ f k - - - ~ f k )  

= COS 0 gq+r+2k-I + i sin 0 gq+r+2k" 
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